Marco Regulatorio de la Operación a Largo Plazo de la Central Nuclear Atucha I

Adriana Politi

CONTENIDO

- 1. Base Conceptual
- 2. Expectativas Regulatorias
- 3. Etapas del Proyecto
- 4. Requisitos Regulatorios (Etapa A / Etapa B)

Encuadre Legal

Ley 26.566 "Actividad Nuclear" sancionada el 25 de noviembre de 2009 y promulgada el 17 de diciembre del mismo año, crea en su Artículo 15 el proyecto de <u>Extensión de Vida</u> de la Central Nuclear Atucha I.

ARTICULO 15. — Extiéndase el régimen instaurado por la presente ley a la ejecución de las obras tendientes a la finalización de la construcción, puesta en marcha y operación de la Central Nuclear Atucha II, al proyecto de extensión de vida de la Central Nuclear Atucha I, y a la construcción de toda otra central nuclear cuya ejecución le sea encomendada a Nucleoeléctrica Argentina Sociedad Anónima (NASA), siempre que se mantenga la titularidad accionaria de Nucleoeléctrica Argentina Sociedad Anónima (NASA) en manos del Estado Nacional u organismos comprendidos en el artículo 8º de la Ley 24.156 de Administración Financiera y de los Sistemas de Control del Sector Público Nacional

MARCO REGULATORIO – BASE CONCEPTUAL (1)

Conceptos detrás de la terminología:

Extensión de Vida

•Vida de diseño: periodo de tiempo durante el cual se espera que el desempeño de una facilidad o componente cumpla con las especificaciones técnicas que se emplearon en su producción.

Licencia de Operación

•La Licencia es válida por un periodo fijo de tiempo, típicamente la vida de diseño.

MARCO REGULATORIO – BASE CONCEPTUAL (2)

Operación a Largo Plazo (LTO)

•Operación más allá de un período de tiempo establecido por ejemplo, por vigencia de licencia, diseño, estándares, licencia y / o regulaciones, que ha sido justificado por la evaluación de seguridad, con consideración dada a los procesos y características que limitan la vida de los sistemas, estructuras y componentes.

Licencia de Operación

•La Licencia es válida por 10 años, después de los cuales se debe presentar una Revisión Periódica de Seguridad para continuar en operación.

MARCO REGULATORIO – BASE CONCEPTUAL (3)

Revisión Periódica de Seguridad y la mejora continua a la seguridad...

MARCO REGULATORIO – BASE CONCEPTUAL (4)

• Licencia de Operación otorgada mediante **Resolución 513/14** establece en su punto 8 una vigencia de 10 años calendario a partir de la emisión de la misma o 32 años de operación equivalente a plena potencia, lo que ocurra primero.

MARCO REGULATORIO – EXPECTATIVAS REGULATORIAS

- La factibilidad de la Operación a Largo Plazo debe ser evaluada de manera <u>sistemática</u> con el objetivo de identificar un plan de acción que permita <u>retener/mantener</u> y <u>elevar</u> el nivel de seguridad tanto nuclear como radiológica.
- Empleo de metodología reconocida internacionalmente como es la establecida por la IAEA en los siguiente safety standards y guías:
 - SSR 2/2 Rev 1: Safety of Nuclear Power Plants: Commissioning and Operation
 - SSG-48: Ageing Management and Development of a Programme for Long Term Operation of Nuclear Power Plants
 - SSG-25: Periodic Safety Review for Nuclear Power Plants

MARCO REGULATORIO – EXPECTATIVAS REGULATORIAS (IAEA SSG-25)

Safety factors relating to the plant

- (1) Plant design;
- (2) Actual condition of structures, systems and components (SSCs) important to safety;
- (3) Equipment qualification;
- (4) Ageing.

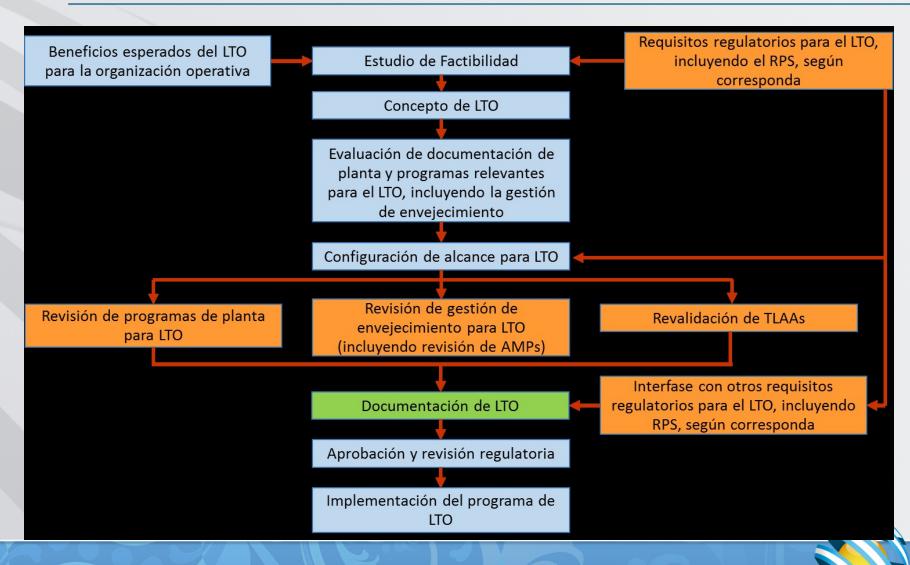
Safety factors relating to safety analysis

- (5) Deterministic safety analysis;
- (6) Probabilistic safety assessment;
- (7) Hazard analysis.

Safety factors relating to performance and feedback of experience

- (8) Safety performance;
- (9) Use of experience from other plants and research findings.

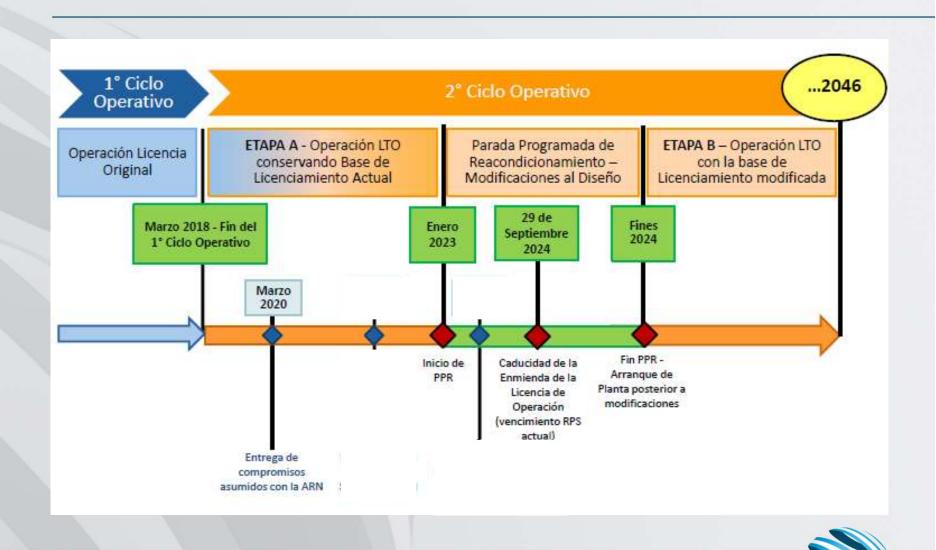
Safety factors relating to management


- (10) Organization, the management system and safety culture;
- (11) Procedures;
- (12) Human factors;
- (13) Emergency planning.

Safety factors relating to the environment

(14) Radiological impact on the environment.

MARCO REGULATORIO – EXPECTATIVAS REGULATORIAS (IAEA SSG-48)


MARCO REGULATORIO – ETAPAS DEL PROYECTO

La Operación a Largo Plazo se estructuró en dos etapas de operación, permitiendo graduar el plan de acciones:

- 1. Etapa "A" que tiene por objetivo el mantenimiento de las Bases de Licenciamiento del 2014.
- 2. Etapa "B" que tiene por objetivo elevar, en la medida de lo posible, el nivel de seguridad delineado en la normativa moderna y el estado del arte.

MARCO REGULATORIO – ETAPAS DEL PROYECTO

MARCO REGULATORIO – REQUISITOS REGULATORIOS

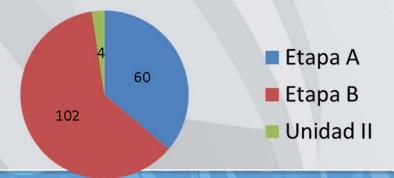
ARN emitió la nota ARN 7282/16 donde establece un conjunto de requisitos regulatorias para iniciar la Etapa "A" de la Operación a Largo Plazo (mantenimiento de las Bases actuales de Licenciamiento).

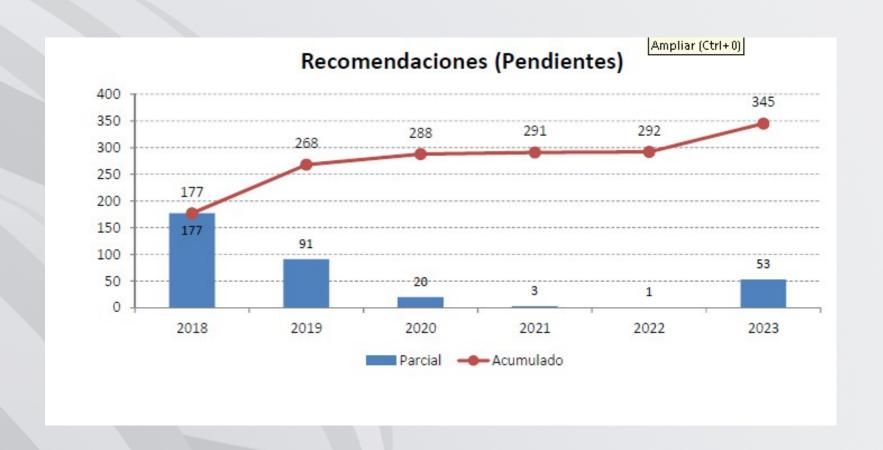
Los mismos pueden agruparse de manera simplificada en los siguientes tres temas:

- 1. Evaluaciones de Estado (EE)
- 2. Revalidación de los análisis de seguridad (TLAAs)
 - 3. Calificación de equipos (EQ)

Para la Etapa "A" se consideraron los siguientes sistemas de seguridad:

Sistemas de seguridad, estructuras y componentes que al ser demandadas deben permanecer en funcionamiento durante y después de eventos base de diseño para asegurar las siguientes funciones:


- Integridad de la envuelta de presión del refrigerante primario,
- Capacidad de apagar el reactor y mantenerlo en una condición de parada segura.
- Capacidad para prevenir o mitigar las consecuencias de accidentes con liberación de materiales radiactivos que podrían resultar en posibles exposiciones fuera de la instalación.


Además de los siguientes sistemas soportes:

QW – generadores de vapor, UY – Sistema anti – incendio, Edificio del reactor, Edificio de piletas

Requisitos regulatorios:

- Establecer una Base de Datos de las EC seleccionadas donde al menos se identifiquen: función prevista, material, ambiente, efecto de envejecimiento.
- Realizar una revisión completa del estado actual y establecer un pronóstico futuro y acciones necesarias para gestionar el envejecimiento de las EC seleccionadas. Debe demostrarse que se identificaron los mecanismos de envejecimiento y que los mismos no impedirán o reducirán la capacidad de las EC de cumplir con su función prevista.

Con relación a los análisis de seguridad que utilizan hipótesis condicionadas a un período de tiempo determinado designados como **Time Limited Ageing Analysis** (TLAA), la ARN requirió las siguientes revalidaciones:

- Resistencia contra la fractura frágil del recipiente de presión, el cual debe incluir la demostración de la Integridad estructural frente a choque térmico presurizado.
- Actualización de las curvas de P-T del recipiente de presión.
- Identificación y revalidación de los TLAA de las estructuras y componentes para las cuales un efecto de envejecimiento pueda degradar su capacidad funcional y pertenezcan al conjunto de estructuras y componentes que cumplen con la función de confinamiento.
- Identificación de los TLAA de las estructuras y componentes para las cuales un efecto de envejecimiento pueda degradar su capacidad funcional y pertenezcan al conjunto de estructuras y componentes que cumplen con las funciones definidas en los puntos 1.1.1 y 1.1.2 del Scoping.

- Establecer un programa de calificación que incluya a todos los equipos y componentes que son necesarios para afrontar ciertos accidentes incluidos en las bases de diseño de la instalación.
- > La calificación debe incluir calificación sísmica y la EMC/EMI.
- Desarrollar EQML.
- Para la definición del programa se adopta el Safety Report Series N°3 de la IAEA, Equipment Qualification in Operational NPPs: upgrading, preserving and reviewing.
- Adicionalmente, las normas específicas de la IEEE/IEC, en particular la IEEE 344 Seismic Qualification of Equipment for Nuclear Power Generating Stations, la IEC/IEEE 60780-323 Nuclear facilities Electrical equipment important to safety Qualification y las recomendaciones del EPRI.

- ➤ ARN emitió la nota ARN 3086/18 donde establece un conjunto de requisitos regulatorias para iniciar la Etapa "B" de la Operación a Largo Plazo completando el alcance de la Etapa "A".
- Presentación del Plan de Mejoras/Acción basado en los resultados de la RPS ampliada, en particular en el factor "Diseño".

 Para la determinación del Plan de Mejoras, se emplea la metodología denominada "Global Assessment"

> Entre los criterios de priorización se encuentra el impacto de las acciones propuestas en los distintos niveles de Defensa en **Profundidad**

As a first order approach, a High or Low relevance or priority has been selected.

Related Safety factor	GAP Description	DID	Priority
Probablistic Analysis	PSA update considering plant modification	3,4	H
	Fire PSA	3,4	Н
	Low power and shutdown PSAs	3,4	L
Deterministic Analysis	Update all safety analysis with plant modification	3	Н
Operation	Update of SAMG procedures	4	L
Design provisions	Review of the methodology for classification SCC's based on safety functions	3	Н
	Review and technical justification of all SCC unavailability time	1,2,3	Н
	Consequential Failure analysis in safety system	3	Н
	Review of the main control room habitability and absence of the emergency control room	4	L
	Review of the main control room habitability	3	Н
	Filtered venting	4,5	L
	Strategy for cooling the reactor vessel	4,5	L
	Improvements in the Fire detection system and mitigation	3	Н
		1	

